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Model of the best-of-N nest-site selection process in honeybees2
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The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future
colony’s fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the
case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process
dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making
mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric
case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior
nest and N − 1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models
highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative
time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals
conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a
time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the
density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
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I. INTRODUCTION20

Collective consensus decision-making [1], in which all21

members of a group must achieve agreement on which of22

several options the group will select, is a ubiquitous problem.23

While groups may be subject to conflicts of interest between24

members (e.g., see Refs. [2,3]), in groups where individuals’25

interests align it is possible to look for mechanisms that26

optimize group-level decisions [4]. In this paper, we model col-27

lective consensus decision-making by social insect colonies,28

in the form of house-hunting by honeybee swarms [5,6],29

but similar decision-making problems manifest in diverse30

other situations, from societies of microbes [7] to committees31

of medical experts [8,9]. Much attention has been paid to32

optimization of speed-accuracy tradeoffs in such situations33

(e.g., see Refs. [10–14]), but theory shows that where decisions34

makers are rewarded by the value of the option they select,35

rather than simply whether or not it was the best available,36

managing speed-accuracy tradeoffs may not help to optimize37

overall decision quality [15]. Here we analyze a value-38

sensitive decision-mechanism inspired by cross-inhibition in39

house-hunting honeybee swarms [5,6]. One instance of value-40

sensitivity is the ability to make a choice when the option41

value is sufficiently high—i.e., it exceeds a given threshold.42

In case no option is available with high-enough value, the43

decision maker may refrain from commitment to any option,44

in the expectation that a high-quality option may later become45

available. As a consequence, value-sensitivity is relevant above46

all in scenarios in which multiple alternatives exist and pos-47

sibly become available at different times. Another interesting48

property of the investigated decision-making mechanism is its49

ability to break decision deadlocks when the available options50

have equal quality. Deadlock breaking has been shown to be51

of interest in a series of scenarios, including collective motion52

[16,17], spatial aggregation [18,19], and collective transport53
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[20]. Previous studies of value-sensitive decision-making have 54

been limited to binary decision problems, although it is known 55

that honeybee swarms and other social insect groups are 56

able to choose from among many more options during the 57

course of a single decision [21–25]. Here, we generalize 58

the model of Ref. [6] and examine its ability to exhibit 59

value-sensitive deadlock-breaking when choosing between N 60

equal alternatives, and also to solve the best-of-N decision 61

problem in which one superior option must be selected over 62

N − 1 equal but inferior distractor options. 63

II. MATHEMATICAL MODEL 64

A. General N-options case 65

Our work builds on a previous model that describes 66

the decentralized process of nest-site selection in honey- 67

bee swarms [5]. The decentralized decision-making process 68

is modeled as a competition to reach threshold between 69

subpopulations of scout bees committed to an option (i.e., 70

a nest). The model is described as a system of coupled 71

ordinary differential equations (ODEs), with each equation 72

representing the subpopulation committed to one option; an 73

equation describing how the subpopulation of uncommitted 74

scout bees changes over time is implicit, since the total number 75

of bees in the system is constant over the course of a decision. 76

Uncommitted scout bees explore the environment and, when 77

they discover an option i, estimate its quality vi , and may 78

commit to that option at a rate γi . The commitment rate to 79

option i for discovery is assumed to be proportional to the 80

option’s quality, that is, more frequent commitments to better- 81

quality nests (γi ∝ vi). Committed bees may spontaneously 82

revert, through abandonment, to an uncommitted state at rate 83

αi . Here, the abandonment rate is assumed to be inversely 84

proportional to the option’s quality, that is, poorer options are 85

discarded faster (αi ∝ v−1
i ). This abandonment process allows 86

bees quickly to discard bad options, and endows the swarm 87

with a degree of flexibility since bees are not locked into 88
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their commitment state. In addition to these two individual89

transitions, which we label as spontaneous, scout bees interact90

with each other to achieve agreement on one option. In91

particular, the model proposed in Ref. [5] identifies two92

interaction forms: recruitment and cross-inhibition, which give93

rise to interaction transitions. Recruitment is a form of positive94

feedback, by which committed bees actively recruit, through95

the waggle dance, uncommitted bees [21,26,27]. Therefore,96

the rate by which uncommitted bees are recruited to option97

i is determined by both the number of bees committed to i98

and the strength of the recruitment process for i, labeled as ρi .99

Similar to discovery, recruitment is assumed to be proportional100

to the option’s quality (ρi ∝ vi). The other interaction form101

that occurs in this decision process is cross-inhibition. Cross-102

inhibition is a negative feedback interaction between bees103

committed to different options; when a bee committed to104

option i encounters, another bee committed to another option105

j (with j �= i), the first may deliver stop signals to the second,106

which reverts to an uncommitted state at a rate βij . For107

binary choices, stop-signalling has previously been shown to108

be a control parameter in a value-sensitive decision-making109

mechanism, in particular setting a value threshold for deadlock110

maintenance or breaking in the case of equal-quality options111

[5,6]. In this study, in agreement with the assumptions made112

above, we assume cross-inhibition proportional to the quality113

of the option that the bees delivering the stop signal are114

committed to. In other words, bees committed to better options115

will more frequently inhibit bees committed to other options116

(βij ∝ vi , see Sec. II B for more details).117

As described above, the set of bees committed to the118

same option is considered as a subpopulation, and the119

model describes changes in the proportion of bees in each120

subpopulation with respect to the whole bee population.121

We assume that a decision is reached when one decision122

subpopulation reaches a quorum threshold [28–30]. Precisely,123

xi and xu denote the proportion of bees committed to option124

i and uncommitted bees, respectively, with N options and125

i ∈ {1, . . . ,N}. A version of the model that we analyze in this126

study has been originally proposed for the binary decision case127

(i.e., N = 2) in Ref. [5] and, later, extended to a more general128

case of N options in Ref. [31]. Analysis of the value-sensitive129

parametrization has been presented by Pais et al. in Ref. [6].130

Here, we generalize this model and extend its analysis to the131

best-of-N case. The general models is132

dxi

dt
= γi xu − αi xi + ρi xu xi −

N∑
j=1

xj βji xi,

i ∈ {1, . . . , N}, (1)

xu = 1 −
N∑

i=1

xi

B. A modified parametrization for value-sensitive133

decision-making134

Following earlier work [5,6,12], we assume a value-135

sensitive parametrization by which the transition rates are pro-136

portional (or inversely proportional) to the option’s quality vi ,137

as mentioned above. Previous work investigated the dynamics138

of the system Eq. (1) with vi = γi = ρi = α−1
i and βij = β for139

two options (i.e., N = 2) [6]. Such a parametrization displays 140

properties that are both biologically significant and of interest 141

for the engineering of artificial swarm systems [31,32]. One 142

of the main system characteristics is its ability to adaptively 143

break or maintain decision deadlocks when choosing between 144

equal-quality options, as a function of those options’ quality. 145

In fact, it has been shown that when the swarm has to decide 146

between two equally and sufficiently good options, it is able 147

to implement the best strategy: that is, to randomly select any 148

of the two options in a short time. However, in Appendix B we 149

show that the system’s dynamics qualitatively change for more 150

than two options, i.e., N > 2: by adopting the parametrization 151

proposed in Ref. [6], the swarm cannot break a decision 152

deadlock for more than two equally good options (see Fig. 5 153

and Appendix B). 154

In this study, we extend previous work by introducing 155

a modified parametrization that features value-sensitivity 156

also for N > 2. Unlike Ref. [6], we investigate a more 157

general parametrization, in which we decouple the rates of 158

spontaneous transitions (i.e., discovery and abandonment) 159

from the rates of interaction transitions (i.e., recruitment 160

and cross-inhibition), similar to Ref. [31]. The proposed 161

parametrization is γi = k vi , αi = k/vi and ρi = h vi , where 162

k and h modulate the strength of spontaneous and interaction 163

transitions, respectively. 164

For the cross-inhibition parameter, we consider the general 165

case in which βij is the product of two components: βij = 166

[A · D]ij , where A and D are two matrices and βij is the 167

ij th element of their product. The former, A, is an adjacency 168

matrix that expresses how subpopulations interact with each 169

other. Therefore, the entries aij of A are either 1 or 0 depending 170

on whether interactions between subpopulations i and j can 171

occur or not. The introduction of the adjacency matrix allows 172

us to define if inhibitory messages are delivered only between 173

bees committed to different options (i.e., cross-inhibition), 174

or also between bees committed to the same option (i.e., 175

self-inhibition, as self refers to the own subpopulation). In this 176

study, in accordance with behavioral results in the literature 177

[5], we do not include self-inhibitory mechanisms; thus, 178

the adjacency matrix contains zeros along its diagonal (i.e., 179

aii = 0,∀i). On the other hand, we consider that interactions 180

between different subpopulations are equally likely, and this 181

is reflected by having aij = 1,∀i �= j . The second component, 182

D, is a matrix that quantifies the stop-signal strength and 183

allows us to define, if needed, different inhibition strengths 184

for each sender-receiver couple. In other words, through D the 185

inhibitory signals can be tuned not only as a function of the 186

option quality of the inhibiting population but also as a function 187

of the option quality of the inhibited population. In this 188

analysis, we model dependence of cross-inhibition strength 189

solely on the value of the option that inhibiting bees are 190

informed about; thus, we investigate the system dynamics for 191

a diagonal cross-inhibition matrix with values h v1, . . . ,h vN 192

along its diagonal, where h is a constant interaction term (as 193

for recruitment), and the vi,i ∈ {1, . . . ,N}, are qualities of the 194

options the inhibiting populations are committed to. Hence, we 195

parametrize the cross-inhibition term as βij = AikDkj = hvi , 196

which determines the other parameters of the system as Eq. (1): 197

γi = k vi, αi = k v−1
i , ρi = h vi, βij = h vi. (2)
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In the following, we introduce the ratio r = h/k between198

interaction and spontaneous transitions. The ratio r acts as199

the control parameter for the decision-making system under200

our new formulation, whereas the strength of cross-inhibition201

(stop-signalling rate) was the control parameter in the original202

analysis [6]. This new control parameter has a simple and203

natural biological interpretation, as the propensity of scout204

bees to deliver signals to others (here, represented by the205

interaction term h), relative to the rate of spontaneous206

transitions (here, represented by the term k).207

We show that the modified parametrization displays the208

same value-sensitive decision-making properties of the binary209

system that are shown in previous studies [6]. In particular,210

we confirm that, in the symmetric case of two equal-quality211

options, the ratio of interaction/spontaneous transitions, r =212

h/k, determines when the decision deadlock is maintained or213

broken [see Fig. 6(a)]. Additionally, we show in Fig. 6(b) that214

the interaction ratio r determines the just-noticeable difference215

to discriminate between two similar value options, in a manner216

similar to Weber’s law, as demonstrated for the cross-inhibition217

rate in Ref. [6].218

C. The best-of-N decision problem219

As well as presenting a general analysis of the system220

dynamics for small N (N = 3), for larger values of N we221

next analyze the best-of-N decision scenario with one superior222

and N − 1 inferior options. This scenario is consistent with223

empirical studies undertaken with bees [23], ants [24,25],224

and with neurophysiological studies [33]. Considering such225

a scenario allows us to investigate the system dynamics as226

a function of four parameters: (i) the number of options N ,227

(ii) the superior option s’s quality v = vs , (iii) the ratio between228

the quality of any of the equal-quality inferior options and of229

the superior option κ = vi/vs (with i �= s), and (iv) the ratio230

between interaction and spontaneous transitions r = h/k. The231

system of Eq. (1) with the parametrization given in Eq. (2) can232

be rewritten in terms of these four parameters as233

dx1

dτ
= v xu − x1

v
+ r v x1

⎡
⎣xu −

∑
j �=1

κ xj

⎤
⎦,

dxi

dτ
= v κ xi − xi

v κ
+ r v xi

⎡
⎣κ

⎛
⎝xu −

∑
j �=1,i

xj

⎞
⎠ − x1

⎤
⎦,

i = 2,..., N,

xu = 1 −
N∑

i=1

xi, (3)

where x1 is the population committed to the best (superior)234

option (i.e., v = v1 � vi,∀i ∈ {2, . . . ,N}) and τ = k t is the235

dimensionless time.236

The system in Eqs. (3) is characterized by N coupled237

differential equations and one algebraic equation. In Eqs. (A9),238

we reduce this system to a system of two coupled differential239

equations by aggregating the dynamics of the populations240

committed to the inferior options. In Sec. III, we show that241

this system reduction allows us to attain qualitatively correct242

results for arbitrarily large N .243

III. RESULTS 244

We first investigate the system dynamics for the case of N = 245

3 options, then we generalize our findings to arbitrarily large 246

N . The reduced system [Eq. (A9)] allows us to investigate the 247

dynamics for arbitrarily large numbers of options N without 248

increasing the complexity of the analysis. In Sec. III A, we 249

show the analysis results for the symmetric case of N equally 250

good options, while in Sec. III B, we report the results for 251

different quality options. 252

A. Symmetric case 253

We start by analyzing the symmetric case of N equal-quality 254

options (i.e., κ = 1). The simplicity of the reduced system 255

[Eq. (A9)] allows us to determine the existence of two 256

bifurcation points which are determined by the parameters 257

r , v, and N , and we show the bifurcation conditions in terms 258

of the control parameter r as 259

r1 = f1(v,N ), r2 = f2(v,N ). (4)

In Appendix D, we report the complete equations for Eqs. (4) 260

as functions of (v,N ) [see Eq. (D4)] or, more generally, of 261

(γ , α, ρ,β) [see Eq. (D2)]. In Fig. 1(a), we show the stability 262

diagram of the system Eq. (3) in the parameter space (r,v), 263

for N = 3. When the pair (r,v) is in area I, the system cannot 264

break the decision deadlock but remains in an undecided state 265

with an equal number of bees in each of the three committed 266

populations. This result can be also seen in Fig. 1(b), where 267

we display the bifurcation diagram for the specific case v = 5. 268

Here, low values of r correspond to a single stable equilibrium 269

representing the decision deadlock. Increasing the signaling 270

ratio, the system undergoes a saddle node bifurcation when r = 271

r1 in Fig. 1(b), at which point a stable solution for each option 272

appears and the selection by the swarm of any of the N equally 273

best-quality options is a feasible solution. However, for (r,v) 274

in area II of Fig. 1(a), the decision-deadlock remains a stable 275

solution and only through a sufficient bias toward one of the 276

options the system converges toward a decision. This system 277

phase can be visualized in the bifurcation diagram of Fig. 1(b) 278

and in the phase portrait of Fig. 2(b): The system escapes 279

from the decision-deadlock attraction basin if noise leads the 280

population to jump into a neighboring basin corresponding to 281

a unique choice. 282

The system undergoes a second bifurcation at r = r2 in 283

Fig. 1(b), that changes the stability of the decision-deadlock 284

from stable (r < r2) to partially unstable (saddle, r > r2). 285

Therefore, for sufficiently high values of the signaling ratio 286

[area III in Fig. 1(a)], the unique possible outcome is the 287

decision for any of the equally best-quality options. The 288

central solution of indecision remains stable (i.e., attracting) 289

with respect to only one manifold, i.e., the line for equal-size 290

committed populations, while it is unstable with respect to the 291

other directions (see the phase portraits of Figs. 2(c) and 2(d) 292

and the video in the Supplemental Material [34]). Instead, the 293

unstable saddle points that surround the central solution have 294

opposite attraction and repulsion manifolds. For this reason, 295

several unstable equilibria can be near to each other, as in 296

Fig. 1(b). 297
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FIG. 1. Dynamics of the complete decision system of Eq. (3) for the symmetric case κ = 1 (i.e., v1 = v2 = v3 = v). Panel (a) shows the
stability diagram as a function of the parameter r and the quality v for N = 3 options. The two curves represents the two bifurcations r1 (blue
solid) and r2 (red dashed) of Equations (4). There are three possible system phases: (I) decision-deadlock, (II) coexistence of decision deadlock
and stable solutions for any option, and (III) decision for any option. Panel (b) shows the bifurcation diagram for N = 3 and v = 5 as a function
of the parameter r . This illustrates the three system phases when varying the control parameter r . Note that, due to the 2D visualization, some
equilibria overlap and thus the bottom branches in panel (b) correspond to the two overlapping equilibria for the options x2 and x3. Panel (c)
shows a stability diagram that visualizes the dependence of the bifurcation points r1 (solid lines) and r2 (dashed lines) as a function of N for
varying v ∈ {1,2,3,5,10}, and reports the same three system phases.

The analysis of the system with three options reveals298

three system phases as a consequence of the two bifurcations299

determined by f1 and f2 [Eq. (4)]. Increasing the number of300

options, the number of system phases increases. In particular,301

for every other N , at odd values (i.e., N ∈ {5,7,9, . . . }), a new302

bifurcation point between r1 and r2 appears. In Fig. 10, we303

report the bifurcation diagrams for v = 5 and N ∈ {4,5,6,7}.304

Despite the system phase increase, the main dynamics for305

any N > 2 can be described by the three macrophases306

described above: (I) decision-deadlock only, (II) coexistence307

of decision-deadlock and decision, and (III) decision only.308

In fact, the additional equilibria that appear for odd N are309

all unstable saddle solutions (with orthogonal attraction and310

repulsion directions with each other), which do not change311

the stability of other solutions. Therefore, we focus our study312

on the bifurcations defined by Eqs. (4) [i.e., Eq. (D4)], which 313

determine the main phase transitions. 314

Figure 1(c) shows the relationship between the bifurcation 315

points r1 and r2, the options’s quality v and the number of 316

options N . The effect of v on r1 and r2 remains similar to that 317

seen in Fig. 1(a), i.e., the bifurcation points vary as a function of 318

v when v is low, while they are almost independent of v when it 319

is large. More precisely, the influence of the quality magnitude 320

v on the system dynamics decreases quadratically with v [see 321

Eq. (D4)]. The number of options, N , influences differently 322

the two bifurcation points. While r1 grows quasilinearly with 323

N , instead r2 grows quadratically with N . Therefore, in 324

the symmetric case, the number of options that the swarm 325

considers plays a fundamental role in the decision dynamics. 326

In fact, too many options preclude the possibility of breaking 327

(a) (b) (c) (d)

FIG. 2. Phase portraits of the complete system (3) for N = 3 options in the symmetric case κ = 1 (i.e., v1 = v2 = v3 = v = 5). Blue dots
represent stable equilibria, and green dots represent unstable saddle points. Saddle manifolds are shown as red (repulsive) and blue (attracting)
lines. Panel (a) shows the system in a decision deadlock phase (i.e., phase I of panel (b), r = 1); in fact, there is only one stable solution with
all the three committed population with equal size. Panel (b) shows the coexistence of the decision deadlock and the decision for any option
(phase II, r = 3). Panel (c) shows the system for high values of r , in which the decision deadlock solution is an unstable saddle point, and
therefore the only stable solutions are the decision for any option (phase III, r = 10). The same phase portrait from another perspective is
shown in panel (d), where a set of trajectories (red lines) are shown. Looking at panel (d), the central unstable saddle node is unstable on the
displayed plane while is stable (i.e., attracting) on the direction orthogonal to the field of view of the plot (d) (i.e., the attraction manifold is the
line x1 = x2 = x3). The system does not possess any periodic attractors.
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FIG. 3. Dynamics of the complete decision system of Eqs. (3) for N = 3 options for the asymmetric case (κ < 1) and superior option’s
quality v = 5. The left panel shows the stability diagram as a function of the parameter r and the ratio between qualities κ . The parameter space
is divided in five different areas (see Fig. 8 to see a representative 3D phase portrait for each area). In area A, the system has a unique solution
corresponding to selection of the best option; in areas B and C, the system may select any of the possible options; in areas D and E the system
may end in a decision deadlock. The underlying density map show the population size of the stable solution for the best option. For low values
of r and similar options (top-left corner), this population is relatively small and may be not enough to reach a quorum threshold. The right
panels show three bifurcation diagrams as a function of the parameter r for κ ∈ {0.5,0.9,0.97}. Note that, due to the 2D visualization, some
equilibria overlap and thus the bottom branches of the bifurcation diagrams correspond to two overlapping equilibria for selection of options
x2 and x3.

the decision-deadlock and selecting one of the equally-best328

options. This result suggests a limit on the maximum number329

of equal options that can be concurrently evaluated by the330

modelled decision-maker.331

B. Asymmetric case332

We next analyze the system dynamics in the asymmetric333

best-of-N case where option 1 is superior to the other N − 1334

same-quality, inferior options i (with i ∈ {2, . . . ,N}). Figure 3335

shows the stability diagram for N = 3 options in the paremeter336

space r,κ . The results show that low values of r allow the337

system to have a unique solution (area A in the left panel of338

Fig. 3). This is especially true when the difference between339

the options is larger (i.e., low values of κ). However, such340

stable solutions may not correspond to a clear-cut decision,341

as the population fraction committed to the best alternative342

may be too low to reach a decision threshold, as indicated343

by the underlying density map in Fig. 3: if r is small and κ344

sufficiently high, then only about half of the population will345

be committed to the best option. Hence, a sufficiently high346

value of r is required for the implementation of a collective 347

decision. For larger values of r , the system undergoes various 348

bifurcations leading to N stable solutions corresponding to 349

the selection of each available option (areas B and C of the 350

left panel in Fig. 3). Therefore, there is the possibility that 351

an inferior option gets selected. For high values of κ , two 352

additional areas appear, labeled D and E in Fig. 3. These areas 353

correspond to the coexistence of an undecided state together 354

with a decision state for the superior and/or the inferior options, 355

similarly to area II in Fig. 1(a). The bifurcation diagrams in the 356

right panels show the effects of r for fixed values of κ . When 357

the best option has double quality than the inferior options 358

(i.e., κ = 0.5, see the bottom-right panel), a low value of r 359

guarantees selection of the best option, whereas a sufficiently 360

high r may result in incorrect decisions by selecting any of 361

the inferior options (which are considerably worse than the 362

best one). As the inferior options become comparable to the 363

superior one, the range of values of r in which there exists 364

a single stable equilibrium in favour of the best options gets 365

reduced (see the middle-right panel for κ = 0.9 in Fig. 3), up 366

to the point that there is no value of r in which the choice 367
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FIG. 4. (a) Stability diagram for best option quality v = 5 in the parameter space r, κ for varying number of options N ∈ {2, . . . ,7}. For
each option, the system has five possible phases that are consistent with the phases described in caption the of Fig. 3. Here we label only areas
A (monostability) and B (multistability) to facilitate readability. (b) Maximum value of κ as a function of N ∈ {2, . . . ,7} and r ∈ (0,20] for
which the system has a unique attractor for the selection of the best-quality option, defined as the best option attracting commitment from at
least 75% of the total decision-making population.

of the superior option is the unique solution (see the top-right368

panel for κ = 0.97 in Fig. 3). In this case, however, there is369

little difference in quality between the superior and inferior370

options, and the system dynamics are similar to the symmetric371

case in which it is most valuable to break a decision deadlock,372

hence to choose a sufficiently high value of r .373

The dynamics observed for N = 3 options are consistent in374

the case of N > 3. Figure 4(a) shows the stability diagram for375

varying number of options N ∈ {2, . . . ,7} (see also Fig. 9). It376

is possible to note that areas D and E get larger as N increases,377

leading to a larger range of values in which one or more stable378

decision states coexist with a stable undecided state, up to the379

point that area C disappears for N � 5. This means that, as the380

number of inferior options increases, the probability of making381

a wrong decision increases as well, especially for high values382

of κ . To minimize the probability of wrong decisions, the value383

of r should be maintained as small as possible, but still high384

enough to ensure that a decision is taken (i.e., with a sufficiently385

large population committed to one option, see the density map386

in Fig. 9). Finally, in Fig. 4(b) we show how the ability to solve387

hard decision problems varies with r and N . To this end, for388

each point in the space r,N , we show the highest value of κ389

for which there exists a unique attractor for the superior option390

corresponding to at least 75% of the population committed391

(i.e., x1 � 0.75). Figure 4(b) demonstrates an approximately392

linear relationship between r and N for a given value of κ .393

IV. DISCUSSION394

We have analyzed a model of consensus decision-making395

that exhibits useful value-sensitive properties that have previ-396

ously been described for binary decisions [6], but generalizes397

these to decisions over three or more options. In order to398

preserve these properties, the single control parameter in the 399

original model of Ref. [6], the rate of cross-inhibition between 400

decision populations, is replaced by a parameter describing 401

the relative frequencies with which individual group members 402

engage in independent discovery and abandonment behaviors, 403

compared to positive and negative-feedback signaling behav- 404

iors. This new control parameter is biologically meaningful 405

and experimentally measurable, so should be of interest for 406

further empirical studies of house-hunting honeybee swarms. 407

Previous work has investigated the role of signaling in 408

collective decision making in a somewhat different framework. 409

Galla [35] has analyzed a model of house-hunting honeybees 410

[36], where the cross-inhibition mechanism was not included. 411

In this model, increasing signaling (referred to as interde- 412

pendence) allows the swarm to select the best-quality option 413

more reliably. The interdependence parameter modulates the 414

strength of positive feedback; the higher the interdependence 415

is, the more a bee is influenced by other bees’ opinion in 416

determining a change of commitment. There are similarities 417

and differences between the meaning of the interdependence 418

parameter and the signaling ratio r that is introduced in this 419

paper. Similar to Refs. [35,36], increasing the value of the 420

ratio r corresponds to an increase in the signaling behavior 421

but, in contrast to previous studies, r is a weighting factor of 422

both positive and the negative feedback. However, note that 423

positive and negative feedback are not necessarily equal in 424

our model, as these mechanisms are also modulated by the 425

option’s quality. In agreement with Refs. [35,36], our results 426

underline the importance of interactions among honeybees in 427

the nest-site selection process. However, given the different 428

meanings of the control parameters, we find that increased 429

signaling behavior helps to break decision deadlocks (in case 430

of equal alternatives), but too high signaling might reduce the 431
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FIG. 5. Bifurcation diagram in 3D of the system (A3) with
N = 3 equal-quality options (i.e., v1 = v2 = v3 = v) as a function of
r = h/k ∈ (0,10] and β ∈ (0,10]. The vertical axis shows x ∈ [0,1],
which represents the proportion of bees committed to one of the
three identical options. Blue surfaces represent stable equilibria, while
green surfaces are unstable equilibria. We can see that for r = 1, the
decision deadlock is stable for any tested values of β. See Section B
for a formal proof of the decision deadlock for r = 1 and N = 3.

decision accuracy when the decision has to be made among432

different quality options.433

We also note some similarities between our results and434

the bifurcation analysis of a model of the collective decision435

making process in foraging ants Lasius niger [37]. This436

model describes the temporal evolution of the pheromone437

concentration along N alternative trails, each of which leads438

to a different food source. The bifurcation parameter in439

the analysis is an aggregate variable composed of the total440

population size, the options’ qualities, and the pheromone441

evaporation rate. Not all of these components are under the442

direct control of the decision maker, and thus cannot be varied443

during the decision process. In contrast, the control parameter444

in our analysis, the signaling ratio r , can be modulated in445

a decentralized way by the individual bees. Comparing the446

bifurcation diagrams for deadlock breaking of Fig. 3(a) in447

Ref. [37] with Fig. 10(a), the two models present similar448

dynamics. The authors also present a hysteresis loop as a449

function of relative food source quality (Fig. 4 in Ref. [37]),450

which is similar to that found as a function of relative nest-site451

quality in Ref. [6] (Fig. 5). Collective foraging over multiple452

food sources is a fundamentally different problem to nest-site453

selection, with exploitation of multiple sources frequently454

preferred in the former, whereas convergence on a single455

option is required in the latter [12]. Nevertheless, it could456

be interesting to make further comparisons of the dynamics457

of the model presented here and other nonlinear dynamical458

models exhibiting qualitatively similar behavior.459

A crucial point in our model is that honeybees need to460

interact at a rate that is high enough to break decision deadlock461

in the case of equal options, in addition to the influence of nest-462

site qualities. This follows from our analysis of the symmetric463

case (Sec. III A), where we observed that high signaling ratio464

r allows the system to break the decision deadlock and to465

select any of the equally best options. However, the analysis466

of the asymmetric case (Sec. III B) revealed that a frequent467

signaling behavior may have a negative effect on the decision468

accuracy, and low r values should be preferred to have a 469

systematic choice of the best available option. These results 470

suggest that a sensible strategy may be to increase r through 471

time. An organism may start the decision process applying 472

a conservative strategy which reduces unnecessary costs of 473

frequent signalling behavior and that, at the same time, allows 474

quickly and accurately to select the best option if it is uniquely 475

the best. Otherwise, in the case of a decision deadlock (due 476

to multiple options having similar qualities), the system may 477

increase its signaling behavior in order to break symmetry and 478

converge toward the selection of the option with the highest 479

quality. This strategy is reminiscent of the suggested strategy 480

of increasing cross-inhibition over time to spontaneously 481

break deadlocks in binary decisions [6]. Further theoretical 482

evidence supporting such a strategy comes from the bifurcation 483

diagrams presented in the middle- and top-right panels in 484

Fig. 3, corresponding to asymmetric case with N = 3 similar 485

options, with κ = 0.9 and κ = 0.97, respectively (see also 486

Fig. 11 for further bifurcation diagrams with N ∈ {4,5,6,7}). 487

In these cases, an incremental increase in r would allow the 488

system to converge accurately towards the best option. In 489

contrast, immediately starting the decision process with a high 490

value of r might decrease the decision accuracy. For instance, 491

in Fig. 3 (right-center), starting with low values of r (i.e., 492

r < 2.1) would bring the system to the stable attractor (blue 493

line) with less than half of the population committed to the 494

best option. A gradual increase of r lets the process follow 495

the (blue, stable) solution line, which leads to the selection of 496

option 1. On the other hand, a process that starts from a totally 497

uncommitted state with a value of r > 2.1 may end in the basin 498

of attraction corresponding to selection of an inferior option, 499

as a consequence of stochasticity of the decision process. Such 500

a strategy could easily be implemented in a decentralized 501

manner by individual group members slowly increasing their 502

propensity to engage in signaling behaviors over time; such a 503

direction of change, from individual discovery to signaling 504

behavior, is also consistent with the general requirement 505

of a decision-maker to gather information about available 506

options, but then to begin restricting consideration to these 507

rather than investing time and resources in the discovery of 508

further alternatives. Theorists and empiricists have previously 509

concluded that honeybee swarms achieve consensus through 510

the expiration of dissent [38], which occurs as bees apparently 511

exhibit a spontaneous linear decrease in number of waggle 512

runs for a nest over time [27]. However, the discovery of 513

stop-signalling in swarms requires that this hypothesis be 514

reevaluated, since increasing contact with stop-signalling bees 515

over time will also decrease expected waggle dance duration 516

[5]. Field observations report that recruitment decreases over 517

time in easy decision problems, while it increases overall in 518

difficult problems (e.g., five equal-quality nests) [39]. Further 519

theoretical work with our model would reveal whether it is 520

capable of explaining these empirically observed patterns. 521

Our analyses also suggest an optimal stable signaling ratio 522

that the decision-making system might converge to. While 523

the level of signalling required to break deadlock between 524

N equal options increases quadratically with N [Fig. 1(c)], 525

the level of signaling that optimizes the discriminatory ability 526

of the swarm in best-of-N scenarios increases only linearly 527

[Fig. 4(b)]. Optimizing best-of-N decisions therefore seems at 528

002400-7



REINA, MARSHALL, TRIANNI, AND BOSE PHYSICAL REVIEW E 00, 002400 (2017)

odds with optimizing equal alternatives scenarios. However,529

in natural environments the probability of encountering N530

(approximately) equal-quality nest options will decrease531

rapidly with N . On the other hand, the best-of-N scenario532

here, while still less than completely realistic, should still533

provide a better approximation to the naturalistic decision534

problems typically encountered by honeybee swarms. Our535

analysis shows that the level of signalling that swarms converge536

to may be tuned appropriately by evolution according to typical537

ecological conditions, namely the number of potentially538

suitable nest sites that are typically available within flight539

distance of the swarm. Swarms of the European honeybee540

Apis mellifera are able to solve the best-of-N problem with541

one superior option and four inferior options [23], presumably542

reflecting the typical availability of potential nest sites in their543

ancestral environment.544

While our model is inspired by nest-site selection in honey-545

bee swarms, we feel its relevance is potentially much greater.546

For example, as mentioned in the Introduction, decision-547

making in microbial populations may share similarities with548

decisions by social insect groups [7]. In addition, cross-549

inhibitory signaling is a typical motif in intracellular decisions550

over, for example, cell fate [40], and single cells can exhibit551

decision behavior similar to Weber’s law [41,42]. Weber’s law552

describes how the ability to perceive the difference between553

two stimuli varies with the magnitude of those stimuli and may554

have adaptive benefits [43]. Several authors have also noted555

similarities between collective decision-making and organiza-556

tion of neural decision circuits, where inhibitory connections557

between evidence pathways are also typical [12,44–47]. Sim-558

ilarly, neural circuits following the winner-take-all principle559

have dynamics regulated by the interplay of excitatory and in-560

hibitory signals and present interesting analogies to the present561

model [48,49]. Since organisms at all levels of biological com-562

plexity must solve very similar statistical decision problems563

that relate to fitness in very similar ways, we feel there is564

definite merit in continuing to pursue the analogies between565

collective decision-making models, such as that presented566

here, and models developed in molecular biology and in neu-567

roscience. Finally, we suggest that the simplicity of the model568

presented here and its adaptive decision-making characteristics569

might inform the design of artificial decentralized decision-570

making systems, particularly in collective robotics (e.g.,571

Refs. [31,32,50,51]) and in cognitive radio networks (e.g.,572

Ref. [52]).573
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APPENDICES581

The Appendices are organized in five sections. In582

Appendix A, we present the complete model in all the583

parametrizations discussed in the article (from the most584

general to the most specific). Then, we report the reduced585

model in a similar set of parametrizations. In Appendix B, we 586

show that the parametrization used in the literature [6] cannot 587

break the decision deadlock in the symmetric case when the 588

number of options is larger than two. In Appendix C, we study 589

the dynamics of the system in the selected parametrization 590

for the binary case, i.e., N = 2. In Appendix D, we report 591

the formulas of the two main bifurcation points for the 592

symmetric case. This formula is particularly significant 593

because it is valid for any number of options. In Appendix E, 594

we report additional results on the system dynamics: we 595

report additional analysis performed on the system deciding 596

between three options, and we show that the results for N = 3 597

options are qualitatively similar for N > 3. 598

APPENDIX A: COMPLETE MODEL 599

AND REDUCED MODEL 600

The general model for N options is 601

dxi

dt
= γi xu − αi xi + ρi xu xi −

N∑
j=1

xj βji xi,

i ∈ {1, . . . , N}, (A1)

xu = 1 −
N∑

i=1

xi,

where xi represents the subpopulation committed to option 602

i and xu the uncommitted subpopulation. γi represents the 603

discovery rate for option i, αi the abandonment rate for 604

option i, ρi the recruitment rate for option i and βji the 605

cross-inhibition from subpopulation j to subpopulation i. 606

We introduce a first parametrization as 607

γi = k vi αi = k v−1
i ρi = h vi βii = 0 βij = β,

(A2)

with i �= j . By applying Eq. (A2) in Eq. (A1), we obtain 608

dxi

dτ
= vi xu − xi

vi

+ r vi xu xi −
N∑

j=1, j �=i

xi β xj ,

i ∈ {1, . . . , N}, (A3)

xu = 1 −
N∑

i=1

xi,

where r = h/k is the ratio of interaction over spontaneous 609

transitions, and τ = k t is the dimensionless time. The 610

parametrization of Eq. (A2) is a generalization of the one 611

proposed in the literature [6], since, using r = 1, the system 612

Eq. (A1) reduces to the old one and thus displays the same 613

dynamics. 614

This intermediate step allows us to visualize that for r � 1 615

there is no value of β that allows us to break the decision 616

deadlock in the case of N > 2 same-quality options (see 617

Fig. 5). This result motivates the change of parametrization 618

with respect to previous work [6]. Additional analyses that 619

confirm the presence of the decision deadlock for values of 620

r = 1 are provided in Appendix B. 621

We modify the parametrization of Eq. (A2) by linking the 622

signaling behaviors (recruitment and cross-inhibition) with the 623
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same value. The modified parametrization is624

γi = k vi, αi = k v−1
i , ρi = h vi, βij = h vi, (A4)

and by applying Eq. (A4) in Eq. (A1), we obtain625

dxi

dτ
= vi xu − xi

vi

+ r vi xi

⎡
⎣xu −

∑
j �=i

κji xj

⎤
⎦,

i, j = 1, . . . , N, (A5)

xu = 1 −
N∑

i=1

xi,

where κij = vi/vj the ratio between options’s values (and τ =626

k t , again, is the dimensionless time).627

1. The reduced model628

In this study, we investigate the scenario in which there is629

one superior option and N − 1 equal-quality inferior options.630

Assuming that the best option is the option 1, the Equation (A1)631

can be simplified through the following variable change:632

xA = x1 xB =
N∑

i=2

xi, λ1 = λA λi = λB

λ ∈ {γ,α,ρ,β} i ∈ {2, . . . ,N}. (A6)

By applying Eq. (A6) to the complete system Eq. (A1), we 633

obtain 634

dxA

dt
= γA xu − αA xA + ρA xA xu − βB xA xB,

dxB

dt
= (N − 1) γB xu − αB xB + ρB xB xu

− N − 2

N − 1
βB x2

B − xA xBβA,

xu = 1 − xA − xB, (A7)

Similarly, Eq. (A5) can be simplified through the following 635

variable change: 636

xA = x1 xB =
N∑

i=2

xi, v = v1, κ = v1

vi

vi = κ v, i ∈ {2, . . . ,N}. (A8)

By applying Eq. (A8) to the complete system Eq. (A5), we 637

obtain 638

dxA

dτ
= v xu − xA

v
+ r v xA[xu − κ xB],

dxB

dτ
= (N − 1) κ v xu − xB

κ v

+ r v xB

[
κ

(
xu − N − 2

N − 1
xB

)
− xA

]
,

xu = 1 − xA − xB, (A9)

Decision
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FIG. 6. (a) Comparison of the stability diagrams in the binary and symmetric case (i.e., N = 2 and v1 = v2 = v) of the newly proposed
parametrization [Eq. (3)] and the previous work [6]. The bifurcation line that determines the two system phases is qualitatively similar, but
the bifurcation parameter is different: In the previous work it is the cross-inhibition signal β, here it is the interaction ratio r . (b) Stability
diagram of the system Eq. (3) as a function of the average quality v̄ = (v1 + v2)/2 and the quality difference 	v = |v1 − v2| for varying
r ∈ {0.6,1,1.4,1.8}, in the binary decision case. The lines show the relationship between the minimum quality difference to have the system
with an unique attractor for the best option and the quality mean. This relationship resembles the Weber’s law observed in psychological studies,
with r determining the coefficient. The results are similar to the ones obtained in Ref. [6], but using a different coefficient (in the previous work
the coefficient was the cross-inhibition, β).
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FIG. 7. Time-dependent solutions of the system of Eqs. (1) and
(2) for N = 3 options, spontaneous transitions strength k = 0.1,
interaction transitions strength h = 0.3, best option quality v = 10,
and varying inferior alternatives’ quality as κ ∈ {0.25,0.5,0.75}. The
main plot displays the dynamics of the population committed to the
best-quality option x1; the inset shows the dynamics of all populations
for κ = 0.5; note that the populations committed for the inferior
alternatives, x2 and x3, have overlaying trajectories. The horizontal
dashed line shows an example quorum threshold [30].

APPENDIX B: NEED FOR A MODIFIED 639

PARAMETRIZATION: DECISION DEADLOCK FOR N = 3 640

In this Appendix, we show that the model of Eq. (A3) with 641

r = 1 and N = 3 cannot break the decision deadlock for any 642

values of β � 0. 643

To prove this, we start from the reduced system given in 644

Eq. (A7) (we could also use the full three-dimensional system 645

but due to the higher number of equilibria this is more difficult). 646

Note that Eq. (A7) describes the reduced system before value- 647

sensitivity is introduced. In this form it is also equivalent to 648

the case r = 1. 649

We assume that αA = αB = α, βA = βB = β, 650

γA = γB = γ , and ρA = ρB = ρ. If we calculate the 651

equilibria we find that there are up to four different points. 652

One is always negative and unstable. Depending on the other 653

three stationary states (the symmetric solution, and two more) 654

and their stability, we determine if the decision maker ends 655

up in decision-deadlock, or not. 656

Investigating the existence of the equilibrium points, we can 657

write down a generalized condition determining the existence 658

of the two nonsymmetric equilibrium solutions that evolve at 659

the bifurcation point (cf. Refs. [5,6]). This reads 660

(−αβ + 2βγ + αβN − 3βγN + βγN2 + βρ − βNρ)2

−4(αγ−2αγN+αγN2)(−2β2+β2N − βρ + βNρ)

= 0. (B1)

A

B

CD
E

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

r

FIG. 8. Dynamics of the system Eq. (3) in the case of N = 3 options. In the top-left panel, we report the stability diagram in the parameter
space r , κ . The plot shows that there are five possible system phases, labeled with letters from A to E. The other panels show a representative
3D phase portrait for each phase. The letter in the bottom-right of each phase portrait indicates which phase they represent.
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(a) (b)

(c) (d)

FIG. 9. Stability diagrams for v = 5 and N ∈ {4,5,6,7}, in panels (a)–(d), respectively. The area A indicates the systems phase with a single
attractor in favor of the best option. Having an unique solution, in this area the system never converges for the selection of inferior options. The
underlying density map shows the population size of the stable solution for the best option. In the dark area the population for the best option
is not sufficient to reach a quorum to take a decision. For an increasing number of options, the dark area increases and low values of r are not
sufficient anymore to allow the swarm to take a decision for similar options (high κ). However, for sufficiently large values of r , the area A
shifts toward higher values of κ . This effect is also shown in Fig. 4 of the main text.

We may resolve this equation with respect to β.661

(1) If we let N = 2, we obtain662

β = 4αγρ

(ρ − α)2
, (B2)

as in the original model in Ref. [5].663

(2) If we now introduce value-sensitivity, i.e., v1 = v2 = v 664

(2 equal options), and let N = 2, ρ = v, γ = v, α = 1/v, we 665

get 666

β = 4v3

(1 − v2)2
, (B3)

which coincides with the result reported in Ref. [6]. 667
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FIG. 10. Bifurcation diagrams of the complete system [Eq. (3)] in the symmetric case (v = 5) for number of options N = 4 in panel (a),
N = 5 in panel (b), N = 6 in panel (c), and N = 7 in panel (d). Blue (dark gray) curves represent stable equilibria and green (light gray) lines
unstable saddle points. The vertical dashed lines are the bifurcation point predicted by the reduced system [Eq. (D4)]. These points always
precisely match with the bifurcation point of the complete system.

(3) If we let N = 3 [and accordingly v1 = v2 = v3 = v (3668

equal options)], ρ = v, γ = v, α = 1/v, which is the extension669

from two options (see model in Ref. [6]) to three options we670

obtain for v > 1/2:671

8v3

1 − 4v2
< β < 0. (B4)

In Eqs. (B2)–(B4) we gave the condition for the existence672

of the two stationary points, which might be reached by673

the decision-maker in addition to the symmetric solution.674

These are related to pitchfork (N = 2) or limit point (N = 3)675

bifurcations. If the parameter β does not range in these676

intervals, then only the symmetric equilibrium is real and677

positive, which is the condition for biological meaningful678

states. This symmetric equilibrium is also stable. In particular,679

Eq. (B4) shows that β needs to be negative to make the680

stationary states in question occur. As, on the other hand,681

β needs to be positive in order to describe cross-inhibition,682

this case has to be excluded, and hence we have shown that683

the parametrization introduced in Ref. [6] cannot describe684

decision-deadlock breaking for three options, as only one685

stable equilibrium exists (the symmetric solution) for r = 1 686

and all β � 0. 687

Also, note that the quality values associated with the avail- 688

able options should be v � 1. Otherwise, some of the available 689

states may take negative values, which is not a biologically 690

relevant solution. This applies to all the parametrizations 691

mentioned above. 692

APPENDIX C: EFFECTS OF THE MODIFIED 693

PARAMETRIZATION FOR N = 2 694

We study the dynamics of the systems Eq. (3) that uses a 695

modified parametrization with respect to previous work [5,6]. 696

We test if, in the binary decision case (i.e., N = 2), the system 697

dynamics are comparable to the dynamics reported in the 698

literature. 699

Figure 6(a) shows a comparison of the stability diagrams 700

for the symmetric case of two options with equal value v. The 701

system dynamics are qualitatively similar, but the bifurcation 702

parameter is different. In Pais et al., the bifurcation is 703

determined by the cross-inhibition β, while in our parametriza- 704

tion it is determined by the ratio of interaction/spontaneous 705

transitions r = h/k. 706
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FIG. 11. Bifurcation diagrams of the complete system [Eq. (3)] in the asymmetric case for number of options N = 4 in panel (a), N = 5 in
panel (b), N = 6 in panel (c), and N = 7 in panel (d). In all plots, the superior option’s quality is v1 = 8 while the inferior options’ quality is
vi = 7.2, i ∈ [2,N ], that is, κ = vi/v = 0.9. Blue curves represent stable equilibria and green lines unstable saddle points. Notice the increase
of the range of values of r in which the undecided state persists. Note also that the stable state at decision for the superior option appears
earlier than the ones for the inferior alternatives. This supports a strategy to deal with the uncertainty in the decision-making scenario based
on the gradual increase of r , which would initially bring the system into an indecision state and subsequently jump to the selection of the
highest-quality option.

Additionally, Pais et al. [6] showed that the cross-inhibition707

determines the minimum difference necessary to discriminate708

between two similar-quality options in a manner similar to the709

Weber’s law. We obtain similar results but using a different710

parameter. In Fig. 6(b) we show that the interaction ratio r711

determines the just noticeable difference.712

APPENDIX D: BIFURCATIONS713

IN THE SYMMETRIC CASE714

In case of N equal-quality options, hereafter called the715

symmetric case, the values of every transition rate are the same716

for both equation A and B, i.e., γA = γB = γ , αA = αB = 717

α, ρA = ρB = ρ, and βA = βB = β. The reduced system of 718

Eq. (A7) becomes 719

ẋA = γ xU − αxA + ρxUxA − βxAxB

ẋB = (N−1)γ xU−αxB+ρBxUxB−βxB

(
xA+N−1

N−2
xB

)

xU = 1 − xA − xB, (D1)

System (D1) undergoes two bifurcations. The simplicity of 720

Eq. (D1) allows us to analytically derive the formula of the 721

two bifurcation points: 722

ρ1 = α(2γ (N − 1) + σ ) + 2
√

α
√

γ
√

α(N − 1) + σ (N − 2)
√

γ (N − 1) + σ + γ σ (N − 2)

σ
,

ρ2 = α(
√

γN
√

γN2 + 4σ + γN2 + 2σ ) + √
γ σ (N − 2)(

√
γN2 + 4σ + √

γN )

2σ
. (D2)
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In the symmetric case, the system Eq. (3) becomes723

dxA

dτ
= v xu − xA

v
+ r v xA[xu − xB],

dxB

dτ
= (N − 1) v xu − xB

v

+ r v xB

[
xu − N − 2

N − 1
xB − xA

]
,

xu = 1 − xA − xB, (D3)

and undergoes two bifurcations at724

r1 = 1

v2
− 2 + N + 2

√
2N − 3

v
,

r2 = (N − 3)N + 2 + 1

v2
+ N − 1

v

√
(4 + v2(N − 2)2).

(D4)

Note, that here the bifurcation points are expressed as a725

function of N , r , and v.726

APPENDIX E: SYSTEM DYNAMICS727

1. Best of three728

Figure 7 shows the time-dependent solutions of the system729

with N = 3 options for varying values of κ ∈ {0.25,0.5,0.75}.730

The plot shows the dynamics of the population committed to 731

the best-quality option x1. For decreasing values of κ , the 732

system converges faster to the stable equilibrium x1 = 1. The 733

system parameters are in a plausible range for the honeybee 734

nest-site selection process, leading to convergence times that 735

are comparable to field experiments, interpreting t in hour 736

units [23]. 737

In Fig. 3, we identify five system phases (labeled as A, B, 738

C, D, and E) for the asymmetric case and N = 3. In Fig. 8, we 739

report a representant 3D phase portrait of the system Eq. (3) 740

for each of the five system phases. 741

2. Best of N 742

Figure 9 shows the stability diagrams for N ∈ [4,7] with an 743

underlaying density map showing the population size for the 744

best option. While area A corresponds to the most favorable 745

system phase, that is, there is one single attractor with a bias 746

for the superior option, however, in the dark shaded area, the 747

population size is relatively low and might be not enough 748

to reach a decision quorum. The dark area increases with 749

the number of options N and decreases with the difference 750

in option’s qualities (i.e., higher κ). Therefore, for similar 751

options, higher values of r (i.e., interactions) are necessary to 752

let the swarm make a decision. 753

Additionally, we report the bifurcation diagram for N ∈ 754

[4,7] for both the symmetric case (Fig. 10) and for the 755

asymmetric case (Fig. 11). 756
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